skip to main content


Search for: All records

Creators/Authors contains: "Wang, Lihan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Motivated by the challenge of sampling Gibbs measures with nonconvex potentials, we study a continuum birth–death dynamics. We improve results in previous works (Liuet al2023Appl. Math. Optim.8748; Luet al2019 arXiv:1905.09863) and provide weaker hypotheses under which the probability density of the birth–death governed by Kullback–Leibler divergence or byχ2divergence converge exponentially fast to the Gibbs equilibrium measure, with a universal rate that is independent of the potential barrier. To build a practical numerical sampler based on the pure birth–death dynamics, we consider an interacting particle system, which is inspired by the gradient flow structure and the classical Fokker–Planck equation and relies on kernel-based approximations of the measure. Using the technique of Γ-convergence of gradient flows, we show that on the torus, smooth and bounded positive solutions of the kernelised dynamics converge on finite time intervals, to the pure birth–death dynamics as the kernel bandwidth shrinks to zero. Moreover we provide quantitative estimates on the bias of minimisers of the energy corresponding to the kernelised dynamics. Finally we prove the long-time asymptotic results on the convergence of the asymptotic states of the kernelised dynamics towards the Gibbs measure.

     
    more » « less